o LRI N S S O S J UL CUUNDY S R PR S S I M I

AP S L A A A 1 Y

2 serTemeen 1998 Embedded Systems Programming

Sarh 03 "98 13:4S

DAVID MCCOMAS

Incorporating Manual
and Autonomous
Code Generation

Code can be geperated manually or using cade-generations saft-
ware tools, buthow (o you interpret the twe? This 2rticle looke< at
a dasign methodoiogy that combines chiect-ariznted design with
autonemous code generation for attitude contrs! flight seftware.

e

ecent improvements in space flight computers including
floating-point hardware, ample EEPROM/RAM, and plen-
ty of CPU power are allowing software engineers o spend
more time engineering the applications software. In ny
case, the application is the attitude control flight software
for an astronomical satellite called the Microwave
Anisotropy Probe (MAP). The MAP flight system is being designed,
developed, and integrated at NASA's Goddard Space Flight Center. The
MAP controls engineers are using Integrated Systems Inc.'s MATRIXx
for their controls analysis.’ In addition to prov:dmg a graphical analysis
environment, MATRIXx includes an autonomois code generation facil-
ity called AutoCode. As the software engineer I was faced with the task of
designing the mtcrfacc between the manually gencrated flight softwarc
and the aulonomou’y generated C code. This article examines the
forces that shaped the final design and describes three highlights of the
design process:

* Defining the manuak-to-autonomdess code interface. The design shields
the controls engineers from the flight environment and defines a
robust functional interfacc that has had little change

* Applying object-oriented design to the manual flight code Modeling the
control modes using inheritance provides a simple and robust design

® Implementing the object-oniented design in C. The implementation of the
inheritance hierarchy is not a generic object-oriented implementa-
tion in C, but it proved to be adequate for MAP's requirements

415 €38 3858 FALGE . 004

L oW et

<
or

AL R A R N A

MAP attitude control
Figure 1 shows a simplified high-level
block diagram of MAP's flight control
software. Sensors measure spacecraft
position and rates. Attitude determi-
nation uscs scnsor measurements to
update the onboard estimated attitude
which is supplied to the controller
subsystem. The desired spacecralt atti-
tude is cithcr supplied by mode man-
agement or internally computed by
command generation. Attitude crror
computes control errors for the con-
trol law, based on a combination of
sensor measurements, estimated atti-
tude, and commanded attitude. The
control law computes control torques
which are output to the actuators. The
shaded portion identifies the con-
troller subsystem which has been des-
ignated for autocode. (The remainder
of the article will use autocode to refer
to both the tool and the aulonomou&
4y generated code.) s 4
To understand the object-oriented
design within the context of this arti-
cle, two other features of MAP must be
described: the sensors and actuators,
and the operational modes. MAP uses
the following sensors and actuators for
attitude dectermination and control:

o Inertial reference units (JRU)—
Measure angular changes in MAP's
position. Spacecraft body rates are
derived from the incremental
angillar measurements

* Digital sun sensor (DSS)—Provides
accurate measurements (<0.01
degrees) of the sun’s position with-
in a 64 degree square field of view

* Coarse sun sensors (CSS)—Provide
coarse measurements (<10
degrees) of the sun’s position. The
CSSes are mounted to provide 4 P
steradian coverage P~

® Star tracker (ST)—Provides an esti-
mated attitude derived from star

AUG O3 '98 13:46

T Attitude determination uses sensor measurements to update the

onboard estimated attitude which is supplied to the controller

measurcements

¢ Propulsion control system (PCS)—
Provides external torque to the
spacecraft via hydrazine-fueled
thrusters

® Reaction wheel assembly (RWA)—
Provides spacecraft momentum
control via three reaction wheels

MARP uses five operational modes to
achieve its mission goals. Modes are '
defined in terms of operational objec-
tives, spacecraft control objectives,
and performance criteria. Each mode
specifies a set of sensors and actuators

subsystem.

ning pattern. Observing is the only
mode used for collecting science
dara

® Delta-V (DV)—Uses IRUs and the
PCS 1o perform spacecraft maneu-
vers. Delta-V is used for trajectory
management to get to the Sun-
Earth L2 point approximately 1.5
million km from the Earth (away
from the sun) and for L2 station-
keeping

¢ Delta-H (DH)—Uses IRUs and the
PCS to perform momentum
unloading

Scn:or ol
Ha “:: {LSensov lnpul- _

diagram

Controfler
Subsystem

Command
Generation

and a contro! subsystem configura-
tion. MAP defines the f(ollowing
modes:

® Sun Acquisition (SA)—Uses [RUs,
CSSes, and the RWA to acquire a
sun-pointing, power, and thermally
safe attitude within 20 minutes
from any initial attitude

o Inertial (IN)—Uses IRUs, DSS, ST,
and the RWA o acquire and hold a
fixed commanded attitude

e Observing (OB)—Uses IRUs, DSS,
ST, and the RWA 10 perform a scan-

Scope the interface

Business. as well as technical forces,
shaped the boundary of the autocode
subsystem. On previous missions, a
high fidelity simulation (HIFT) written
in Fortran was used to develop the
control algorithms which were docu-
mented via a hand-written algorithin
document. Autocode changes this par-
adigm by forcing the HIFI design to
assimilate enough of the FSW environ-
ment to allow the autocode to be used
directly by the FSW. Autocodc’s scope
dictates how much of the flight envi-

Embedded Systems Programming SEPTEMBER 1998 3

415 S386 3858

Srergrg vy

1031165 PN RIE

LD Q3

ronment needs to be modeled by
HIFL

MAP's FSW tasking architecture is
built on an existing “softwarc bus”
which placed limits on autucode’s
scope. The software bus provides stan-
dardized packet-based intertask com-
munication and insulates applications
from the real-lime operating system.
This heritage immediately limited
autocode to an intratask scope and
1SI's RTOS, pSOSystem, was not even
considered. The flight controller pic-
tured in Figure | is suitable for a single
task because all of its components exe-
cute at 1Hz and have fairly strong data
cohesion.

Additiona! design decisions further
narrowed the autocode scope to the

well. MAP is Goddard’s first missian (0
use an autonomous code generator
for its FSW, and prior to MAP
Goddard has had minimal expericnce
with ISI's code generator. Coupled
with MAP’s short development sched-
ule. this small, wellcontained subset
of the FSW is 2 good way to minimize
the risk factor. In addition, the con-
troller subsystem has a high algorithm-
to-logic ratio which maximizes
autocode’s benefits of speeding up the
process of documenting and coding
the algorithms from HIFI and in
reducing errors during the translation
process. However, MAP’s rewrn on
investment is limited due to the learn-
ing curve and the small scope of the
autocode relative to the size of the
entire FSW effort.

o'n ,o mpL‘anout ut

“r

Autonomous
code
environment
MAP is using
autocode’s basic fea-
tures since we are gen-
erating discrete pro-
cedures without mul-
titasking. The output
of autocode is simply
a collection of C func-

shaded controller subsystem. It has a
small and simple set of inputs and our-
puts. All 1/O can be performed in the
spacecraft body frame. The controller
subsystem does not directly interface
to the following FSW subsystems: sen-
sor/actuator hardware, grouud cori-
mand inputs, error message output,
and fault detection. Therefore, the
HI¥1 does not need to emulaie these
FSW facilities. Attitude determination
shares many of the same attributes as
the controller subsystem with respect
to being suitable for autocode, but it
was not chosen for autocode since
MAP could adapt an existing attitude
determination subsystem from a previ-
ous mission.

Limiting the scope of autocode to
the conirotler subsystem coincides
with Goddard's business philosophy as

tions. Using
autocode’s template language, I have
rnsmmizcd/‘aulncodc to output each
function in'a separate source file with
a corresponding header file. This
helps isolate and identify exactly what

the testing effart required to verify a
late algorithm change.

The collection of C functions can
be conceptualized as a single object.
Figure 2 shows a class diagram repre-
sentation of the autocode interface
that must be managed by the manual-
ly coded FSW. Only two autocode
functions need to be called
Initialize needs to be called once
during system initialization. Execute is
called each control cycle and it man-
ages calling the subordinate autocode
functions. The Input structure is
loaded prior to calling Execute and
the Output structure contains the

" results. The contents of Input and

Output are as shown in Table 1.

Object-oriented design

As I mentioned, control modes specify
a set of sensors and actuators to bc
used and the control subsystem con-
figuration. Inheritance works particu-
larly well to abstract common attribut-
es and behavior shared among the
control modes. Figure 3 shows the
inheritance diagram used as a mode}
for the manually coded portion of the
controller. The modes are first classi-
fied according to what actuator is used
for control and cach actuator con-
troller is subdivided into specific con-
trollers.

The base controller class provides
three functions: New, Delete, and
MonitorPerformance. The italicized
functions are virtual functions and

~

Aulocode elass diagrdmys -~ -

Cantroller Subsystem

Parameters

Initialize
Execute (Input,Output)

Parameters

Methods

code has changed as a result of an
algorithm change. This strategy may
he useful after our scheduled develop-
ment period when we need 10 acces

4 sietemBer 'y9e Embedded Systems Programming

'98 13:458

415 538 38SE

descendants provide the implementa-
tion. New and Delete arc used 1o
instantiate and destroy controllers,

respectively. MonitorPerformance s

PAGE . Q0E

L VW VL

AUG 03

IR 1

LRV AN

Identifier

Stateldentifier
TimelnState
SysMonMagnitude
VirtualfunctionTable

New

f Delete
MonitorPerformance
CompltetTorque
UpdateState

1 1sModeComplete

Constructor
Destructor

RWA Controller

RWA Torque Cmds

CompleteTorque -

7

sun Acquisition

Virtual Functinn Table

Constructor Constructor

| Virtual Function Table §-

Virtual Function Table

Constructor

WVirtual Function Table

Constructor

PCS Contraller

PCS Thruster Cmds
BumDuration
Constructor)
_ [Destructor
CompleteTorque

AN

-1 Target Momentum
-{ Virtual Function Table

Destructor Destructor Destructor § Constructor

IsModeComplete Perform slew IsmModeComplete Destructor Destructor

UpdateState IsModeConiplete UpdateState IsModeComplete isModeComplete
UpdateState UpdateState UpdateState

J

.

similar to a protected function in C++
and is used by descendant classes to
monitor body rates, body rate errors,
and attitude errors. Notice that
ComputeTorque is implemented by
the RWA and PCS controllers and not
the five control modes. Compute-
Torque calls autocode’s Execute func-
tion, bassing mode-specific control
flags that are defined when a mode is
constructed. Finally, IsModeComplete
and UpdateState arc implcmcmed by
cach controller because they address
state information that is unique to
each controller.

Since the base Controller class
defines a common interface for all of
the controllers, the code that manages
the controllers is identical regardless
of which controller 1s executing. This

98 13:50

proved v::ry useful during unit testing
since the test driver is identical to the
FSW that manages the controllers.
The Input and Output data structures
used by the autocode are managed by
both the Controller class and the RWA
and PCS controller classes. Although
management of the autocode inter-
face is not encapsulated within a single
class, it has proven to be a robust
implementation, resilient to ripple
efTects due to changes in the autocode
interface. Inheritance has also kept
the functions relatively small and sim-
ple so they have been easy 1o under-
stand and test.

Impiementation
I did not take a general approach
toward implementing object-oriented

concepts in C. Virtual function rables
were manually created and no dynam-
ic memory allocation is used. Listing 1
shows the essential data type defini-
tions for the abstract controller class.
The ATTCTL_RWA and
ATTCTL_PCS structures are used by
the RWA and PCS controllers and
access control is managed by the pro-
grammer. In C++ these data structures
would be defined as part of the RWA
and PCS classes and the compiler
would enforce data access control.
The New function loads the
ATTCTL_VTBL struclure. A pointer
to a controller's virtual function table
is supplied as a parameter 10 New. This
implementation relies on the fact that
multiple controllers cannot exist

simultaneously.

Embedded Systoms Programming SEFTEmBER ‘998 8

415 S38 3858

PAGE OQO7

attitude control

e

1033100 apiaye

D EYER] N Padiieid T/ Loy LR L)

/» Virtual Function Table =/

typedef void (#ATTCTL_CONSTRUCTOR)
typedef void (#ATTCTL,_COMPUTE_TORGLE)
typedef void (*ATTCTL_PESTRUCTOR)
typedef Boolean (+ATTCTL_JS MODE_COMPLETE) (woid);

typedef void (#ATTCTL_UPDATE_STATE)
typedef struct {
ATTCTL_CONSTRUCTOR Constructor;

ATTCTL_DESTRUCTOR Destructor;

) ATTCTL_VTBL;

typedef .struct {
float TorquelNUM WHEELS);

3 ATTCTL,_RHA

typedef struct <
unsigned16 comtstun_nﬁus‘rERSJ,

} ATTCTL_PCS;

typedef struct {
ATTCTL_RWA Rva;
ATTCTL, _PCS Pesy -
ATTCTL_VTBL Function;
) ATTCTL_CLASS;

(void «);

{void);

ATTCTL_COMPUTE_TORQUE ComputeTorque,;

ATTCTL_LS_MODE_COMPLETE 1sModeConplete;
ATTCTL_UPDATE_STATE - UpdateState;
I+ FIA mode -structure: Only meaningful dr{ng RWA modes #/ :

Ix PCS mode strucmre. ‘only meanirgful during PCS mdcs »/

faixx Abstract controller class whinf

(vaid);

(void);

. .Cumputg'ro,rque,'s

. wvoid- AttCtL_Cawtel‘omJe(vcid) ¢

function

) /« End AttCtl_ComputeTorgue() #/
void AttCtl_RwaComputeTorquelvoid)

imp!emerrtation

1/ ‘Loed INAUT structure with Measured Bodmte, bheel Speed, S Mgle
/! toad INPUT structure with estimated and comended attitude)

17 Call AutpCode Execute(INPUT,OUTPUT))
(xAttCtl. Function. ComputeTorque)(); // Call M/Pcs virturl ComputeTorque

/1 Load AttCtl.SysMomMag using OUTRUT deta

7/ Load AttCtl.Rwa structure using Autolode's OUTPUT
} /+ End AttCtl_RweComputeTorque() #/°

Listing 2 shows ComputeTorque's
implementation. AttCti_Compute-
Torque loads the dynamic portions of
the autocode Input data. The portions

of the Input structure that are static
during a controller’s lifelime are
loaded when a controller is construct-
ecd. AttCtl_ComputeTorque invokes the

6 serremBiR 1998 Embedded Systems Programming

41S S38 3858

autocode followed by a call to the
RWA or PCS ComputeTorque virtual
function. The RWA or PCS function
processes the mode-dependent por-
tion of Output as shown in
AttCtl_RwaComputeTorque. Finally. the
mode independent portion of Output
is processed by AuCul’s ComputeTorque.

Some downsides exist to using the
autocode in this fashion. The Input
structure to autocode includes mode
control flags which summarize infor-
mation that is already captured by the
class inheritance structure. Autocode
contains logic to execute different
forms of the controller based on the
1nput mode control flags. If the
entire system were designed as 2
whole, the conditional blocks of the
autocode controller would exist as
functions within the individual con-
wroller classes.

Another drawback to AutoCode is
that it can be inefficient with respect
to both memory and speed. Autocode
works on each graphical clement as it
produces code. Many blocks are trans-
lated into functions with large para-
meter lists. Functions are good for
traceabiiity from code to design but
may be bad for code optimization.
There is an inline procedural block
feature that allows blocks to be gener-
ated inline with the current block’s
code. This helps, but lumping code
into a single function is not always
desirable. For MAP, we are generating
each *superblock” as a separate func-
tion contained in a separate file. This
allows algorithmic changes to be con-
figuration managed at the sourcc file
level. The additional function over-
head is acceptable since we aren’t
close 1o our CPU or memory budgets.

MAP is also taking a conservative
approach with respect to testing the
autocode. To maximize savings in test
time, autocode would be treated as a
black box during FSW unit testing.
The analyst would test the algorithms
in HIFI and the autocode would be
passed to the build/acceptance test
team after being integrated with the
rest of the FSW. MAP has altered this

PAGE . 00&

oM DT R AL

| Further MAP readmg

MAP’s mission is to probe condmons ln the‘ early umverse by measunng the propertles '
of the .cosmic mlcrowave background radxatlon Wer thc full. sky Thc!e measun:ments "
- will hielp determing:the valyes ot Blg: Bangcosmologital parametgrs and determine. how .
E and when galacﬁc striictutes formed. MAP wil maintain’a halo orbit about the. Sun-,,

v@yﬁom the sun) The am By

direct approach. For early builds,
autocode is being unit tested asa black
box on a PC using test data captured
from HIFI without full path (white
box) testing. For the final build, full
path unit testing un the flight hard-
ware will be performed. This
approach allows us to take advantage
of the quick design-to-test time for
early builds when algorithmic changes
are most likely to happen. However, it
is based on the assumption that the
full path unit testing will not uncover
substantial coding problems late in
the project schedule.

Lowering the barrier

Autocode has forced us to formally
define our controller subsystem inter-
face becausc it's a separate physical
and logical entity. We may not be
exploiting all of the features of
autocode but limiting the scope has
served us well in terms of meeting
schedule and mitigating risks.
Autocode has affected our traditional
way of doing business. On previous
missions, the softwarc engineers have
worked fairly independently of the
controls analysts, using an algorithms
document as a formal communica-
tions mechanism. Autocode has suc
cessfully lowered the cultural barrier.
bringing the software engineers into
the controls analysis environment, and
the controls engineers have become

. more cognizant of the flight software

environment. This symbiotic relation-
ship helps scheduling since the depen-
dency flow is no longer unidirectional
from the analysts to the software devel
opers.

AUG 02 98 13:c4

1 consider this project to be transi-
tional with regard to how future pro-
jects may be developed. Advances in
flight softwarc architectures, coupled
with advancements in onboard com-
puting resources, should allow for
objeci-based software construction.
Standardized object communications
mechanism such as CORBA may be a
viable option for flight controllers as
they mature. The Distributed Object
Computing group at Washington
University is a good example of the
work being done in this area’

Once a business establishes an
object communications layer, reusable
object libraries can be developed.
Reusable objects may be archived in a
format that is usable with respect to a
developer. For example, a reusable
controller written in C does not have
much value to analysts that work in 2
graphical cnvironment. The anulysws
would prefer to have a reusable con-
troller in a form that can be easily
manipulated within their develop-
ment environment. Autonomous code
generation tools would allow reusable
libraries to exist in different formats,
as long as the tools produce objects
that conforn to an object communica-
tions standard. Regardless of what the
future may hold, the design of high
quality interfaces will be a critical fac-
tor in successfully developing and
using object libraries. MAP's design is
first step towacds achieving this goal.

David McComa's bio will go vight here.
References
1. tAtgeratea Syslens wavw s com

£

2. ciesta.cs.wustl edus - schenidtriesearch.
htmi

RESOURCES
Executable code related to this article is available at
www.embedded.com.

Embedded Systems Programming SePTemser 1998 7

415 S3g 38se

PAGE . 009

___attitude controt

